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ABSTRACT 
 

Free vibration responses of elastic beams with extra point masses are under 
investigations by dint of the scaled boundary finite element method (SBFEM) and precise 
integration methodology (PIM). Locations and number of supplemental concentrated 
masses are not restricted in the proposed approach. Only the length of the beam model 
is needful to be discretized with the help of spectral elements. Based on the scaled 
boundary coordinate system, partial differential equations of the elastic beam are 
transformed into the second order ordinary differential matrix equation. By virtue of the 
dual vector, it is convenient to obtain a further simplified first order ordinary differential 
equation, which is solved by PIM to acquire the stiffness matrix. In light of coupling the 
same degrees of freedom, the global mass matrix is gained. Calculating the eigenvalue 
equation brings free vibration frequencies of the elastic beam with extra point masses. 
Comparisons with available results provided by literatures are presented to reveal the 
high accuracy of the introduced SBFEM. 
 
 

1. Introduction 
 
Elastic beams are widely used in engineering structures. To ensure the structural 

safety and performance of beams, it is necessary to explore vibration characteristics and 
solve natural frequencies. In practice, beam structures often carry attached concentrated 
masses, which significantly alter flexural frequencies. In order to accurately predict 
dynamic responses, optimize design and prevent resonance-related failures, 
investigations on variations of eigenfrequencies for elastic homogeneous beams with 
added point masses are essential. 

In recent years, several studies have focused on the impact of attached masses on 
vibration responses of elastic beams. Li et al.[1] analyzed transverse vibration behaviors 
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of a cantilever beam under the axial force and tip mass and proposed a new integral 
equation method for more accurately predicting flexural frequencies. Torabi et al.[2] 
proposed an exact closed-form solution for vibration modes of a Timoshenko beam with 
multiple concentrated masses and revealed that added masses significantly reduced 
natural frequencies of the beam. Shi et al.[3] studied the impact of unequal end masses 
on vibration frequencies of a free-free beam and introduced the Fredholm integral 
equation to approximate resonant frequencies. Aksencer and Aydogdu[4] used the Ritz 
method to analyze free vibration behaviors of rotating composite beams and demonstrate 
the effect of attached mass on flexural frequencies. Rahmani et al.[5] employed the 
modified couple stress theory and Rayleigh-Ritz method to explore the effect of attached 
masses on distributions of natural frequencies for micro-beams. These studies highlight 
that positions and magnitudes of attached masses play a significant role in the vibration 
characteristics of beams. 

The structure of this paper is organized as follows. Section 2 briefly outlines the 
solution procedure to transverse vibration frequencies by the SBFEM. In Section 3, three 
numerical examples are presented to validate the proposed method and highlight the 
effectiveness. Section 4 concludes the study with a summary of key results. 

 
Fig. 1 The elastic beam with four point masses. 

 
2. Solution procedure 
 

This section presents the derivation and solution process of governing equations for 
elastic homogeneous beams carrying extra concentrated masses using the SBFEM 
coupled with the PIM. Fig. 1 displays that the elastic beam with the length l, width b and 

thickness t carries four point masses i

addM  (i=1, 2, 3, 4). 

In the plane-stress state, the stress-strain relation of the beam is formulated as 

    C =  (2.1) 

   
T

zz xx xz   =  (2.2) 

   
T

zz xx xz   =  (2.3) 

where the constitutive matrix in Eq. (2.1) is denoted as 
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Meanwhile,    and    in Eqs. (2.2) and (2.3) stand for vectors of the stress and 

strain. In Eq. (2.4), E  and   mean elastic modules and Poisson's ratio of the beam 

structure. 
The beam is discretized along its longitudinal axis using high-order spectral 

elements. Each node of the spectral element has two degrees of freedom: elastic 
displacements ( , )zu z x  and ( , )xu z x . A scaled boundary coordinate system ( , )z   is 

applied to simplify the solution procedure. 
The x-coordinate and displacement field are interpolated as 

( )     ( )x N x N x =   =   (2.5) 
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Ν  (2.6) 

where  x  is constituted by nodal coordinates of the spectral element and the shape 

function matrix ( )N     is expressed as the Lagrange polynomial.  

With the help of the strain-displacement relationship, the strain vector is rewritten as 

   
( )   

( )  ( )  ( ) 1 2

,

1 0 0 0
1

0 0 0 1

0 1 1 0
z

d u z d
u z B u z B u z

dz J d




   
       = + = +      
      

Ν
Ν  (2.7) 

with 1B    and 2B    defined as 

 
 

 1 2

,

1 0 0 0 0 0
1 1

0 0 0 1 0 1

0 1 1 0 1 0

d
B B
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Ν
Ν Ν  (2.8) 

In Eq. (2.7), ( )  
,

J N x


=    represents the Jacobian determinant.  

The stress field is formulated as 

  1 2

,{ } ( { ( )} { ( )})zC B u z B u z    = +     (2.9) 

Applying the principle of virtual work yields the second-order ordinary differential 
equation 

     0 1 1 2

, ,
[ ] ( ) ([ ] [ ]) ( ) [ ] ( ) 0T

zz z
E u z E E u z E u z+ − − =  (2.10) 

where constant coefficient matrices are denoted as 

 
1

0 1 1

1
[ ] [ ] [ ]TE B C B J bd

−
=   (2.11) 

 
1

1 2 1

1
[ ] [ ] [ ]TE B C B J bd

−
=   (2.12) 

 
1

2 2 2

1
[ ] [ ] [ ]TE B C B J bd

−
=   (2.13) 

Introducing the nodal force vector 
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forms the variable ( ) X z  
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u z
X z
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By virtue of Eq. (2.15), Eq. (2.10) is rewritten as 

( )    ( ) 
,z

X z Z X z= −  (2.16) 

with the coefficient matrix 

 

1 1
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1 1
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T
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The solution to Eq. (2.16) is obtained  

( )     Z z
X z e c

−
=  (2.18) 

where  Z z
e

−
 stands for the matrix exponential. 

Adopting the PIM with the thickness division, the stiffness matrix  K  related to 

displacements and external forces is derived 

 
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In Eq. (2.19),  Bu ,  BF  and  Tu ,  TF  symbolize displacements and external 

forces at top (z=t) and bottom (z=0) surfaces, respectively. 
Aided by the kinetic energy, the consistent mass matrix for the homogeneous beam 

is expressed as 

 
0

 
0

B
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M
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M

 
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   
(2.20) 

Submatrices TM  and BM  are identical due to the symmetry 

   
1

12

T

T B

t
M M b J d 

−
= =  N N  (2.21) 

where   is the density of the beam structure.  

Added point masses i

addM  at nodes and the diagonal entries of [M] are integrated 

according to the rule of matching same degrees of freedom (DOFs). For k concentrated 
masses at DOFs d1, d2, …, dk, the global mass matrix is denoted as 

 
 

  therwise

i

add iii
c ii

ii

M M if i d
M

M

 +       =
= 

            

 (2.22) 

Natural frequencies ω to the elastic beam with extra point masses are calculated by 

   2 0cK M− =  (2.23) 

3. Numerical examples 
 



The 2025 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM25)
BEXCO, Busan, Korea, August 11-14, 2025

Built upon the above derivation, vibration frequencies of elastic beams carrying 
concentrated masses with different positions and numbers are solved in this section. To 
illustrate the accuracy of the developed technology, comparisons with reference results 
in related literatures are provided. The dimensionless formulas for mass ratios and 
positions of additional point masses as well as natural frequencies are expressed as 

i

add
i

M

Al



=  (2.24) 

i
i

x

l
 =  (2.25) 

2

0 l A EI  =  (2.26) 

where A  and I  are the area and moment of inertia respectively.  
 

 
Fig. 2 The elastic beam with a single point mass. 

3.1. The elastic beam with a single point mass 
In this section, free vibration behaviors of the elastic beam with a single point mass 

are investigated, as illustrated in Fig. 2. Dimensions of the beam are l=1, b=0.03 and 
t=0.01. The point mass with 1 =  is placed at various positions η=0.0, 0.1, 0.2, 0.3, 0.4, 

0.5 and 0.6. Three boundary conditions are considered: simple-simple, clamped-simple 
and clamped-clamped. Solutions to natural frequencies under different constraints are 
displayed in Tables 1-3. Results obtained by the proposed SBFEM are compared with 
reference solutions from Ref. [6]. Tables 1–3 show that computed vibration frequencies 
agree closely with existing results with relative errors generally below 0.7%. As a result, 
the accuracy and effectiveness of the introduced approach are validated. 
 

Table 1 Vibration frequencies of the beam with one point mass under simple-simple supports 
  ω1 ω2 ω3 ω4 ω5 

η=0.0 

Ref. [6] 9.8695 39.4784 88.8264 157.9144 246.7413 

SBFEM 9.8675 39.4441 88.6529 157.3669 245.4107 

Error(%) -0.0207 -0.0870 -0.1953 -0.3467 -0.5393 

η=0.1 

Ref. [6] 8.9962 29.8891 66.0691 127.2135 213.3439 

SBFEM 8.9943 29.8653 65.9558 126.8271 212.7481 

Error(%) -0.0206 -0.0796 -0.1715 -0.3037 -0.2793 

η=0.2 

Ref. [6] 7.4541 26.9462 73.5140 149.3992 246.7413 

SBFEM 7.4528 26.9277 73.3878 148.8992 245.6657 

Error(%) -0.0178 -0.0686 -0.1717 -0.3347 -0.4359 

η=0.3 

Ref. [6] 6.3946 29.7503 86.7293 143.2258 209.3172 

SBFEM 6.3937 29.7291 86.5623 142.7514 208.3562 

Error(%) -0.0146 -0.0713 -0.1926 -0.3312 -0.4591 

η=0.4 Ref. [6] 5.8468 35.2374 79.9788 132.6574 246.7413 
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SBFEM 5.8460 35.2090 79.8315 132.2470 245.4106 

Error(%) -0.0141 -0.0806 -0.1842 -0.3094 -0.5393 

η=0.5 

Ref. [6] 5.6795 39.4784 67.8883 157.9144 206.7901 

SBFEM 5.6788 39.4441 67.7764 157.3669 205.7803 

Error(%) -0.0127 -0.0870 -0.1648 -0.3467 -0.4883 

 
 
 

Table 2 Natural frequencies of the beam with one point mass under clamped-simple supports 
  ω1 ω2 ω3 ω4 ω5 

η=0.1 

Ref. [6] 22.3733 61.6728 120.9032 199.8604 298.5569 

SBFEM 22.3593 61.5732 120.5395 198.8947 296.4504 

Error(%) -0.0628 -0.1614 -0.3008 -0.4832 -0.7055 

η=0.2 

Ref. [6] 21.9474 53.8427 89.8598 151.9623 243.0824 

SBFEM 21.9325 53.7195 89.5176 151.2708 242.8319 

Error(%) -0.0677 -0.2288 -0.3809 -0.4550 -0.1031 

η=0.3 

Ref. [6] 18.3360 40.9434 93.3305 177.8542 290.1980 

SBFEM 18.3220 40.8814 93.0922 177.0728 289.1711 

Error(%) -0.0764 -0.1515 -0.2553 -0.4393 -0.3539 

η=0.4 

Ref. [6] 14.4030 44.2995 112.5615 195.4739 254.3674 

SBFEM 14.3939 44.2416 112.2408 194.5278 252.7315 

Error(%) -0.0631 -0.1307 -0.2849 -0.4840 -0.6431 

η=0.5 

Ref. [6] 12.4047 53.5218 114.5992 167.6507 297.2762 

SBFEM 12.3982 53.4440 114.2643 166.9303 295.1939 

Error(%) -0.0524 -0.1454 -0.2922 -0.4297 -0.7005 

η=0.6 

Ref. [6] 11.8182 61.6727 95.7568 199.8604 253.7298 

SBFEM 11.8124 61.5732 95.5118 198.8947 252.0927 

Error(%) -0.0494 -0.1613 -0.2559 -0.4832 -0.6452 

 
Table 3 Eigenfrequencies of the beam with one point mass under clamped-clamped supports 

  ω1 ω2 ω3 ω4 ω5 

η=0.0 

Ref. [6] 15.2752 45.5767 79.3377 133.4672 217.8576 

SBFEM 15.2687 45.5007 79.0580 132.9238 217.1437 

Error(%) -0.0426 -0.1668 -0.3526 -0.4071 -0.3277 

η=0.1 

Ref. [6] 13.8203 33.2808 77.0176 153.7460 259.8318 

SBFEM 13.8135 33.2373 76.8597 153.3875 258.7435 

Error(%) -0.0490 -0.1306 -0.2051 -0.2332 -0.4188 

η=0.2 

Ref. [6] 11.3683 33.0378 92.2403 178.0890 234.5798 

SBFEM 11.3631 33.0052 92.0381 177.3521 233.2119 

Error(%) -0.0460 -0.0986 -0.2192 -0.4138 -0.5831 

η=0.3 

Ref. [6] 9.6093 38.6505 103.6283 145.8877 263.2084 

SBFEM 9.6056 38.6119 103.3719 145.3552 261.6470 

Error(%) -0.0381 -0.0999 -0.2474 -0.3650 -0.5932 

η=0.4 

Ref. [6] 8.6977 47.2840 84.6891 172.7437 236.1355 

SBFEM 8.6949 47.2299 84.5039 172.0606 234.7557 

Error(%) -0.0327 -0.1143 -0.2187 -0.3954 -0.5843 

η=0.5 

Ref. [6] 8.4780 48.5385 87.0356 158.8255 266.7995 

SBFEM 8.4724 48.4798 86.8500 158.2016 265.1883 

Error(%) -0.0662 -0.1210 -0.2132 -0.3928 -0.6039 
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Fig. 3 The homogeneous beam carrying two attached concentrated masses. 

3.2. The homogeneous beam carrying two attached concentrated masses 
This section explores free vibration responses of the homogeneous beam carrying 

two attached concentrated masses, as portrayed in Fig. 3. The geometric dimensions 
are the same as that in Section 3.1. Two point masses are located at positions η1=0.1 
η2=0.4 and η1=0.5 η2=0.7 with mass ratios α1=1 α2=1, α1=1 α2=10, α1=10 α2=1 and α1=10 
α2=10. Table 4 presents natural frequencies of the beam with simple-simple boundary 
constraints, where two masses are located at η1=0.5 and η2=0.7. In the Table 5, 
eigenfrequencies for the clamped-free beam with additional masses at η1=0.1 and η2=0.4 
are provided. In all cases, solutions computed by the employed SBFEM show excellent 
agreement with reference results from Ref. [7]. 
 
Table 4 Frequency parameters of the beam with two point masses under simple-simple conditions 

   ω1 ω2 ω3 ω4 

η1=0.5 
η2=0.7 

α1=1 
α2=1 

Ref. [7] 4.7297 25.1279 60.8832 141.2890 

SBFEM 4.7299 25.1099 60.7864 140.8179 

Error(%) 0.0049 -0.0717 -0.1590 -0.3334 

α1=1 
α2=10 

Ref. [7] 2.3875 17.9251 59.5695 136.9930 

SBFEM 2.3871 17.9125 59.4754 136.5352 

Error(%) -0.0154 -0.0702 -0.1579 -0.3342 

α1=10 
α2=1 

Ref. [7] 2.0777 22.0363 54.6468 140.866 

SBFEM 2.0775 22.0198 54.5630 140.3942 

Error(%) -0.0101 -0.0750 -0.1533 -0.3349 

α1=10 
α2=10 

Ref. [7] 1.6769 9.8120 53.5165 136.5350 

SBFEM 1.6768 9.8045 53.4360 136.0769 

Error(%) -0.0079 -0.0767 -0.1505 -0.3355 

 
Table 5 Flexural frequencies of the beam with two lumped masses under clamped-free conditions 

   ω1 ω2 ω3 ω4 

η1=0.1 
η2=0.4 

α1=1 
α2=1 

Ref. [7] 3.1802 13.5261 50.8105 74.6163 

SBFEM 3.1798 13.5184 50.7160 74.3114 

Error(%) -0.0118 -0.0569 -0.1860 -0.4086 

α1=1 
α2=10 

Ref. [7] 1.8816 8.4921 49.5416 71.4882 

SBFEM 1.8814 8.4881 49.4555 71.1900 

Error(%) -0.0124 -0.0466 -0.1738 -0.4171 

α1=10 
α2=1 

Ref. [7] 3.1645 12.6406 26.0392 56.8499 

SBFEM 3.1641 12.6293 25.9276 56.7305 

Error(%) -0.0127 -0.0898 -0.4286 -0.2100 

α1=10 
α2=10 

Ref. [7] 1.8773 8.4071 24.6129 53.0191 

SBFEM 1.8770 8.4028 24.4975 52.9161 

Error(%) -0.0151 -0.0516 -0.4687 -0.1942 
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Fig. 4 The beam structure with three added lumped masses. 

3.3. The beam structure with three added lumped masses 
This section examines changing rules of vibration frequencies for the beam structure 

with three added lumped masses, as demonstrated in Fig. 4. The identical dimensional 
parameters with Section 3.1 are adopted. Two types of boundary conditions are under 
consideration: clamped-clamped and simple-clamped. Positions of three point masses 
are η1=0.1, η2 =0.4, η3=0.8 and η1=0.2, η2=0.5, η3=0.7. Five kinds of mass ratios α1, α2 
and α3 are discussed. Natural frequencies of elastic beams with different constrain 
conditions and extra masses are exhibited in Tables 6-7. In all test situations, 
eigenfrequencies provided by the utilized SBFEM show strong agreement with reference 
values from Ref. [7] with relative errors less than 0.5%, which further confirms the 
accuracy, stability and applicability of the present methodology for solving free vibration 
problems of elastic beams carrying multiple point masses under various boundary 
conditions. 
 
Table 6 Natural frequencies of the beam with three added masses and clamped-clamped supports 

   ω1 ω2 ω3 ω4 

η1=0.1 
η2=0.4 
η3=0.8 

α1=1 
α2=1 
α3=1 

Ref. [7] 11.7922 30.7215 67.7822 110.9670 

SBFEM 11.7856 30.6750 67.5185 110.5599 

Error(%) -0.0556 -0.1513 -0.3890 -0.3669 

α1=1 
α2=1 
α3=10 

Ref. [7] 7.6383 17.1981 66.3658 105.8490 

SBFEM 7.6310 17.1781 66.1164 105.4602 

Error(%) -0.0952 -0.1164 -0.3758 -0.3673 

α1=1 
α2=10 
α3=1 

Ref. [7] 4.5411 28.6699 66.8277 107.8630 

SBFEM 4.5387 28.6277 66.5641 107.4802 

Error(%) -0.0522 -0.1473 -0.3945 -0.3549 

α1=10 
α2=1 
α3=1 

Ref. [7] 11.1358 24.0862 34.1821 105.6040 

SBFEM 11.1270 23.9996 34.0930 105.2615 

Error(%) -0.0786 -0.3595 -0.2607 -0.3244 

α1=10 
α2=10 
α3=10 

Ref. [7] 4.2900 10.8779 25.0046 97.4892 

SBFEM 4.2877 10.8612 24.8826 97.1895 

Error(%) -0.0544 -0.1532 -0.4878 -0.3074 

 
Table 7 Vibration frequencies of the beam with three added masses and simple-clamped supports 

   ω1 ω2 ω3 ω4 

η1=0.2 
η2=0.5 
η3=0.7 

α1=1 
α2=1 
α3=1 

Ref. [7] 6.9686  21.2964  43.3097  161.7880  

SBFEM 6.9665  21.2790  43.2375  161.1664  

Error(%) -0.0308  -0.0815  -0.1667  -0.3842  

α1=1 
α2=1 
α3=10 

Ref. [7] 4.2861  14.3862  35.9369  161.6720  

SBFEM 4.2840  14.3754  35.8829  161.0509  

Error(%) -0.0479  -0.0751  -0.1502  -0.3842  

α1=1 Ref. [7] 3.1284  20.6621  34.4942  159.3900  
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α2=10 
α3=1 

SBFEM 3.1275  20.6465  34.4366  158.7790  

Error(%) -0.0296  -0.0755  -0.1671  -0.3833  

α1=10 
α2=1 
α3=1 

Ref. [7] 3.8659  14.1970  40.5099  159.7870  

SBFEM 3.8648  14.1862  40.4429  159.1712  

Error(%) -0.0276  -0.0761  -0.1655  -0.3854  

α1=10 
α2=10 
α3=10 

Ref. [7] 2.4381  7.3628  14.8312  156.9830  

SBFEM 2.4374  7.3575  14.8076  156.3815  

Error(%) -0.0295  -0.0725  -0.1594  -0.3832  

 
4. Conclusion 
 

This paper presented the numerical study on free vibration behaviors of elastic 
beams with additional point masses based on the SBFEM and PIM. The effectiveness of 
the proposed approach is confirmed through several numerical examples involving 
different point masses. The computed natural frequencies show excellent agreement 
with benchmark results from existing literatures, which releases both the reliability and 
accuracy of the introduced procedure.  
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